Lesson 6.5 Exercises, pages 521–526

A

3. Identify the indicated characteristic of each function.
 a) amplitude of \(y = 5 \sin x \)
 The amplitude is 5.
 b) amplitude of \(y = 2 \cos x \)
 The amplitude is 2.
 c) period of \(y = \sin 10x \)
 The period is \(\frac{2\pi}{10} = \frac{\pi}{5} \)
 d) period of \(y = \tan 4x \)
 The period is \(\frac{\pi}{4} \)
 e) phase shift of \(y = \sin \left(x - \frac{\pi}{7} \right) \)
 The phase shift is \(\frac{\pi}{7} \)
 f) phase shift of \(y = \cos \left(x + \frac{\pi}{12} \right) \)
 The phase shift is \(-\frac{\pi}{12} \)

B

4. For each function below, sketch the graph for \(-\pi \leq x \leq \pi \), then identify each characteristic:
 i) amplitude
 ii) period
 iii) zeros
 iv) equations of any asymptotes
 v) domain of the function
 vi) range of the function
 a) \(y = \cos x \)
 i) The amplitude is 1. ii) The period is 2\(\pi \).
 iii) The zeros are \(\pm \frac{\pi}{2} \). iv) There are no asymptotes.
 v) The domain is \(x \in \mathbb{R} \). vi) The range is \(-1 \leq y \leq 1 \).
b) \(y = \sin x \)

![Graph of \(y = \sin x \)](image)

i) The amplitude is 1.
ii) The period is \(2\pi \).
iii) The zeros are 0, \(\pm \pi \).
iv) There are no asymptotes.
v) The domain is \(x \in \mathbb{R} \).
vi) The range is \(-1 \leq y \leq 1\).

5. Does this graph represent a periodic function? Explain.

![Graph of \(y = f(x) \)](image)

No, the graph does not represent a periodic function because the graph does not repeat in regular intervals.
6. Use technology.

 a) i) Graph each function.
 \(y = 2 \cos x \quad y = -3 \cos x \quad y = \frac{1}{3} \cos x \)

 ii) How does varying the value of \(a \) affect the graph of \(y = a \cos x \)?

 When \(a = 1 \), the graph is \(y = \cos x \) with amplitude 1. As \(a \) varies,
 the amplitude varies. When \(a > 1 \), the graph of \(y = \cos x \) is
 stretched vertically by a factor of \(a \) and the amplitude increases;
 when \(0 < a < 1 \), the graph of \(y = \cos x \) is compressed vertically by
 a factor of \(a \) and the amplitude decreases; when \(a < 0 \), the graph is
 also reflected in the \(x \)-axis.

 b) i) Graph each function.
 \(y = \sin 3x \quad y = \sin (-4x) \quad y = \sin \frac{3}{4}x \)

 ii) How does varying the value of \(b \) affect the graph of \(y = \sin bx \)?

 When \(b = 1 \), the graph is \(y = \sin x \) and its period is \(2\pi \). As \(b \) varies,
 the period of the graph varies. When \(b > 1 \), the graph of \(y = \sin x \) is
 compressed horizontally by a factor of \(\frac{1}{b} \) and the period decreases;
 when \(0 < b < 1 \), the graph of \(y = \sin x \) is stretched horizontally by
 a factor of \(\frac{1}{b} \) and the period increases; when \(b < 0 \), the graph is also
 reflected in the \(y \)-axis.

 c) i) Graph each function.
 \(y = \cos \left(x - \frac{\pi}{6}\right) \quad y = \cos \left(x - \frac{\pi}{4}\right) \quad y = \cos \left(x + \frac{\pi}{3}\right) \)

 ii) How does varying the value of \(c \) affect the graph of
 \(y = \cos (x - c) \)?

 When \(c = 1 \), the graph is \(y = \cos x \) with phase shift 0. As \(c \) varies, the
 phase shift varies. When \(c > 0 \), the graph of \(y = \cos x \) is translated
 \(c \) units right; when \(c < 0 \), the graph is translated \(c \) units left.

 d) i) Graph each function.
 \(y = \sin x + 1 \quad y = \sin x - 2 \quad y = \sin x + 0.5 \)

 ii) How does varying the value of \(d \) affect the graph of
 \(y = \sin x + d \)?

 When \(d = 0 \), the graph is \(y = \sin x \). As \(d \) varies, the graph of \(y = \sin x \)
 is translated vertically. When \(d > 0 \), the graph is translated \(d \) units up;
 when \(d < 0 \), the graph is translated \(d \) units down.
7. Sketch the graph of each function. Describe your strategy.

a) \(y = \cos x + 1 \)

I used the completed table of values for \(y = \cos x \) from Lesson 6.4, translated each point 1 unit up, extended the pattern, then drew a smooth curve through the points.

b) \(y = \sin 2x \)

I used the completed table of values for \(y = \sin x \) from Lesson 6.4, halved each \(x \)-coordinate, extended the pattern, then drew a smooth curve through the points.

c) \(y = \cos \left(x - \frac{\pi}{3} \right) \)

I used the completed table of values for \(y = \cos x \) from Lesson 6.4, translated each point \(\frac{\pi}{3} \) units right, extended the pattern, then drew a smooth curve through the points.
d) \(y = 2 \sin x \)

\[y = 2 \sin x \]

I used the completed table of values for \(y = \sin x \) from Lesson 6.4, doubled each \(y \)-coordinate, extended the pattern, then drew a smooth curve through the points.

8. Use technology to graph \(y = \sin \left(x + \frac{\pi}{2} \right) \) and \(y = \cos x \).

Explain the result.

The graphs coincide. The graph of \(y = \cos x \) is the image of the graph of \(y = \sin x \) after a horizontal translation of \(\frac{\pi}{2} \) units left; that is, for any angle \(x \) radians, \(\cos x = \sin \left(x + \frac{\pi}{2} \right) \).

9. A student says that the amplitude of this sinusoidal function is 5.

Is the student correct? Explain.

No, the amplitude is one-half of the vertical distance between a maximum point and a minimum point, which is 2.

10. Sketch the graph of each function. Identify its characteristics.

a) \(y = \csc x \)

Take the reciprocal of each \(x \)-value in the completed table for \(y = \sin x \) in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is \(2\pi \). There are no zeros. The equations of the asymptotes are \(x = k\pi, k \in \mathbb{Z} \). The domain is \(x \neq k\pi, k \in \mathbb{Z} \). The range is \(y \geq 1 \) or \(y \leq -1 \).
b) \(y = \cot x \)

Take the reciprocal of each \(x \)-value in the completed table for \(y = \tan x \) in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is \(\pi \). The zeros are \((2k + 1)\frac{\pi}{2}, k \in \mathbb{Z} \). The equations of the asymptotes are \(x = k\pi, k \in \mathbb{Z} \). The domain is \(x \neq k\pi, k \in \mathbb{Z} \). The range is \(y \in \mathbb{R} \).

11. Use technology. Graph the function \(y = \sin x + \cos x \).

The function is periodic because its values repeat at regular intervals.
The function is sinusoidal because its maximum and minimum values are equidistant from the centre line.