1. **Multiple Choice** Given the graph of the function $y = f(x)$, which graph below right represents $y = \sqrt{f(x)}$?
2. For each function \(y = f(x) \) graphed below:
- Sketch the graph of \(y = \sqrt{f(x)} \).
- State the domain and range of \(y = \sqrt{f(x)} \).
- Explain why the domains are different and the ranges are different.

![Graphs of functions](image)

Mark points where \(y = 0 \) or \(y = 1 \). The graph of \(y = \sqrt{f(x)} \) is above the graph of \(y = f(x) \) between these points. Choose, then mark other points on the graph of \(y = \sqrt{f(x)} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = f(x))</th>
<th>(y = \sqrt{f(x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>2</td>
<td>(\approx 1.4)</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Join the points with a smooth curve.
Domain is: \(x \geq -6 \)
Range is: \(y \geq 0 \)

\(y = \sqrt{f(x)} \) is not defined for \(-2 < x < 6\). Mark points where \(y = 0 \) or \(y = 1 \). Choose, then mark other points on the graph of \(y = \sqrt{f(x)} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = f(x))</th>
<th>(y = \sqrt{f(x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>5</td>
<td>(\approx 2.2)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>(\approx 2.2)</td>
</tr>
</tbody>
</table>

Join the points with 2 smooth curves.
Domain is: \(x \leq -2 \) or \(x \geq 6 \)
Range is: \(y \geq 0 \)

The domain of a linear function or a quadratic function is all real values of \(x \), but the square root of a negative number is undefined, so any value of \(x \) that makes the radicand negative is not in the domain of a radical function.
The range of the linear function is all real values of \(y \), and the range of the quadratic function is all real values of \(y \) that are greater than or equal to \(-4\). The principal square root of a number is always 0 or positive, so the range of the radical functions is restricted to these values of \(y \).
3. Solve each radical equation by graphing. Give the solution to the nearest tenth.

a) \(-x + 3 = \sqrt{2x - 1}\)
 Write the equation as:
 \(-x + 3 - \sqrt{2x - 1} = 0\)
 Graph the related function:
 \(f(x) = -x + 3 - \sqrt{2x - 1}\)
 Use graphing technology to determine the approximate zero: 1.5505103
 So, the solution is: \(x \approx 1.6\)

b) \(\sqrt{x + 2} = 5 - \sqrt{3x + 4}\)
 Write the equation as:
 \(\sqrt{x + 2} - 5 + \sqrt{3x + 4} = 0\)
 Graph the related function:
 \(f(x) = \sqrt{x + 2} - 5 + \sqrt{3x + 4}\)
 Use graphing technology to determine the approximate zero: 1.779514
 So, the solution is: \(x \approx 1.8\)

2.2

4. Use graphing technology to graph each rational function.

Identify any non-permissible values of \(x\) and the equations of any horizontal asymptotes.

a) \(y = \frac{3x}{x + 4}\)
 Since \(x + 4 \neq 0\), then \(x \neq -4\)
 The vertical asymptote has equation \(x = -4\).
 The horizontal asymptote has equation \(y = 3\).

b) \(y = \frac{3x}{x^2 - 4}\)
 Since \(x^2 - 4 \neq 0\), then \(x \neq \pm 2\)
 The vertical asymptotes have equations \(x = 2\) and \(x = -2\).
 The horizontal asymptote has equation \(y = 0\).

c) \(y = \frac{x^2 - 4}{3x}\)
 Since \(3x \neq 0\), then \(x \neq 0\)
 The vertical asymptote has equation \(x = 0\).
 There is no horizontal asymptote.

d) \(y = \frac{x^2 - 4x}{3x}\)
 Since \(3x \neq 0\), then \(x \neq 0\)
 There is a hole at \(x = 0\).
 There is no horizontal asymptote.

2.3

5. Multiple Choice Which function has a graph with a hole?

A. \(y = \frac{x + 4}{2x^2 + 8x}\)
B. \(y = \frac{x - 4}{2x^2 + 8x}\)

C. \(y = \frac{4x + 4}{2x^2 + 8x}\)
D. \(y = \frac{x + 4}{2x^2 - 8x}\)
6. Match each function to its graph. Justify your choice.

i) Graph A

\[y = \frac{-12x}{x - 3} \]

There is a vertical asymptote with equation \(x = 3 \). The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the \(x \)-axis. The function matches Graph B.

ii) Graph B

\[y = \frac{2x^2 - x - 15}{3 - x} \]

Factor: \[y = \frac{(2x + 5)(x - 3)}{3 - x} \]

or \[y = -\frac{(2x + 5)(x - 3)}{x - 3} \]

There is a hole at \(x = 3 \). The function matches Graph C.

iii) Graph C

\[y = \frac{x^2}{x - 3} \]

There is a vertical asymptote with equation \(x = 3 \). The degree of the numerator is 1 more than the degree of the denominator, so there is an oblique asymptote. The function matches Graph D.

iv) Graph D

\[y = \frac{x^2}{x^2 - 3} \]

The function is not defined for \(x^2 - 3 = 0 \); that is, \(x = \pm \sqrt{3} \). So, there are vertical asymptotes at \(x = -\sqrt{3} \) and \(x = \sqrt{3} \). The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the \(x \)-axis. The function matches Graph A.
7. For the graph of each rational function below, determine without technology:
 i) the equations of any asymptotes and the coordinates of any hole
 ii) the domain of the function
 Use graphing technology to verify the characteristics.

 a) \(y = \frac{2x^2}{25 - x^2} \)
 i) The function is undefined when \(25 - x^2 = 0 \); that is, when \(x = \pm 5 \). There are no common factors, so there are vertical asymptotes with equations \(x = 5 \) and \(x = -5 \).
 The degrees of the numerator and denominator are equal, so there is a horizontal asymptote. The leading coefficients of the numerator and denominator are 2 and \(-1\), respectively.
 So, the horizontal asymptote has equation: \(y = -2 \)
 ii) The domain is: \(x \neq \pm 5 \)

 b) \(y = \frac{-2x^2 - 6x}{x + 3} \)
 i) The function is undefined when \(x + 3 = 0 \); that is, when \(x = -3 \).
 Factor: \(y = \frac{-2x(x + 3)}{x + 3} \)
 There is a hole at \(x = -3 \). The function is: \(y = -2x, x \neq -3 \)
 The coordinates of the hole are: \((-3, 6)\)
 ii) The domain is: \(x \neq -3 \)

8. Solve each rational equation by graphing. Give the solution to the nearest tenth.

 a) \(x - 2 = \frac{3x - 5}{x - 3} \)
 Graph a related function: \(f(x) = x - 2 - \frac{3x - 5}{x - 3} \)
 Use graphing technology to determine the zeros:
 \(x = 1.8 \) or \(x = 6.2 \)

 b) \(\frac{x^2 + 3x - 5}{x - 1} = -5 \)
 Graph a related function: \(f(x) = x^2 + 3x - 5 + 5 \)
 Use graphing technology to determine the zeros:
 \(x = -9.1 \) or \(x = 1.1 \)