1. **Multiple Choice** Which inequality is not represented by this graph?
 - A. \(y > x^2 - x - 6 \)
 - B. \(y > \left(x - \frac{1}{2} \right)^2 - \frac{25}{4} \)
 - C. \(y > (x + 2)(x - 3) \)
 - D. \(y > (x + 3)(x - 2) \)

2. **Multiple Choice** Which inequality below is represented by this number line?
 - A. \(2x^2 + 7x - 4 \geq 0 \)
 - B. \(2x^2 + 7x - 4 \leq 0 \)
 - C. \(-2x^2 - 7x + 4 \geq 0 \)
 - D. \(2x^2 - 7x + 4 \leq 0 \)

3. **Graph each inequality. Give 2 possible solutions in each case.**
 a) \(2x^2 - 5x < -2 \)

 Solve:

 \[2x^2 - 5x + 2 = 0 \]

 \[(2x - 1)(x - 2) = 0 \]

 \(x = 0.5 \) or \(x = 2 \)

 When \(x < 0.5 \), such as \(x = 0 \), L.S. = 0; R.S. = -2;

 so \(x = 0 \) does not satisfy the inequality.

 When \(0.5 < x < 2 \), such as \(x = 1 \), L.S. = -3; R.S. = -2;

 so \(x = 1 \) does satisfy the inequality.

 The solution is: \(0.5 < x < 2, x \in \mathbb{R} \)

 Two possible solutions are: \(x = 1 \) and \(x = 1.5 \)
b) \(-2 \geq -0.5(x - 6)^2\)

Solve: \(-2 = -0.5(x - 6)^2\)
\[(x - 6)^2 = 4\]
\[x - 6 = \pm 2\]
\[x = 4 \text{ or } x = 8\]

When \(x \leq 4\), such as \(x = 0\), L.S. = -2; R.S. = -18;
so \(x = 0\) does satisfy the inequality.

When \(x \geq 8\), such as \(x = 10\), L.S. = -2; R.S. = -8;
so \(x = 10\) does satisfy the inequality.

The solution is: \(x \leq 4 \text{ or } x \geq 8\), \(x \in \mathbb{R}\)

Two possible solutions are: \(x = 1\) and \(x = 20\)

Graph the related functions.
The line has slope 0.5 and \(y\)-intercept -2.
Draw a solid line. Shade the region below the line.

\[\text{Graph of } y = 0.5x - 2\]

The parabola is congruent to \(y = -x^2\) and has vertex \((-3, 4)\).
Draw a broken curve. Shade the region above the curve.

\[\text{Graph of } y > -(x + 3)^2 + 4\]
4. At a school cafeteria, an apple costs 75¢ and a banana costs 50¢. Ava has up to $5 to spend on fruit for herself and her friends.

a) Write an inequality to represent this situation. What are the restrictions on the variables?

Let \(a \) represent the number of apples and \(b \) represent the number of bananas.

An inequality is: \(75a + 50b \leq 500 \), or \(3a + 2b \leq 20 \)
Both \(a \) and \(b \) are whole numbers.

b) Determine 2 possible ways that Ava can spend up to $5.

Determine the coordinates of 2 points that satisfy the related function.
When \(a = 0, b = 10 \)
When \(a = 6, b = 1 \)
Join the points with a solid line.
The solution is the points, with whole-number coordinates, on and below the line.
Two ways are: 4 apples, 2 bananas; 2 apples, 6 bananas

5. Solve each system of equations. Use algebra for one system and graphing technology for the other. How did you decide which strategy to use?

a) \(y = 2x^2 + x - 1 \)
\(x + y = 12 \)
Rearrange equation 1:
\(y = 12 - x \)
Substitute \(y = 12 - x \) in equation 1:
\(12 - x = 2x^2 + x - 1 \)
\(2x^2 + 2x - 13 = 0 \)
This equation does not factor, so I use graphing technology. I use algebra when the equation does factor.
Input the equations. To the nearest tenth, the graphs intersect at these points: \((-3.1, 15.1)\) and \((2.1, 9.9)\)
6. The cross section of a pedestrian tunnel under a road is parabolic and is modelled by the equation \(y = -0.3x^2 + 1.8x \), where \(y \) metres is the height of the tunnel at a distance of \(x \) metres measured horizontally from one edge of the path under the tunnel.

In 2010, the tallest living person was about 2.56 m tall. Could he walk through the tunnel without having to bend over?

How could you use an inequality to solve this problem?

Determine the values of \(x \) for which \(y \geq 2.56 \).

Solve: \(-0.3x^2 + 1.8x \geq 2.56\), or \(-0.3x^2 + 1.8x - 2.56 \geq 0\)

Use graphing technology. Input: \(y = -0.3x^2 + 1.8x - 2.56 \)

Determine if there are any values of \(x \) for which \(y \geq 0 \); these values are approximately \(2.3 \leq x \leq 3.7 \).

So, the tallest living person could walk through the tunnel.