Lesson 5.4 Math Lab: Assess Your Understanding, pages 388–390

Use a graphing calculator.

1. a) Graph each system of equations. On the grids below:
 - Sketch the graphs.
 - Label them with their equations.
 - Write the coordinates of the points of intersection.

 i) \(y = -2x^2 + 8 \)
 \(3x - y = -3 \)

 ![Graph of a parabola and a line](image1)

 ii) \(y = (x - 2)^2 + 4 \)
 \(2x + y = 7 \)

 ![Graph of a parabola and a line](image2)

 iii) \(y = -1.5x^2 + 6 \)
 \(x - 3y = -21 \)

 ![Graph of a parabola and a line](image3)

 No points of intersection

b) Use the graphs in part a to identify the different numbers of solutions that a linear-quadratic system may have.

A linear-quadratic system may have 2 solutions, 1 solution, or no solution.
2. a) Graph each system of equations. On the grids below:
 • Sketch the graphs.
 • Label them with their equations.
 • Write the coordinates of the points of intersection.

 i) \(y = x^2 + 5 \)
 \(y = -x^2 + 7 \)

 ii) \(y = (x - 3)^2 \)
 \(y = -3x^2 + 6x - 9 \)

 No points of intersection

 iii) \(y = x^2 \)
 \(y = -(x - 2)^2 + 2 \)

 iv) \(y = -2(x + 3)^2 - 4 \)
 \(y = -2x^2 - 12x - 22 \)

 Infinite points of intersection
b) Use the graphs in part a to identify the different numbers of solutions that a quadratic-quadratic system may have.

A quadratic-quadratic system may have infinite solutions, 2 solutions, 1 solution, or no solution.

3. Graph each system of equations, then write the coordinates of the points of intersection to the nearest tenth.

 a) \(y = 2x^2 + 5x - 3 \)
 \(y = -3x + 2 \)

 b) \(y = -2x^2 + 2x + 5 \)
 \(y = x^2 - 7x + 9 \)

 \((-4.5, 15.6)\) and \((0.5, 0.4)\)
 \((0.5, 5.5)\) and \((2.5, -2.2)\)

4. Write the system of equations represented by each graph, then solve the system. Give the solutions to the nearest tenth.

 a) The line has slope 2 and \(y \)-intercept 3: \(y = 2x + 3 \)
 The parabola has vertex \((2, 1)\) and is congruent to \(y = x^2 \)
 Equations ① and ② form the system.
 The approximate solutions are: \((0.4, 3.7), (5.6, 14.3)\)

 b) The line has slope \(-3\) and \(y \)-intercept 2: \(y = -3x + 2 \)
 The parabola has vertex \((2, 1)\) and is congruent to \(y = -0.5x^2 \)
 Equations ③ and ④ form the system.
 The approximate solutions are: \((0.6, 0.1), (9.4, -26.1)\)

5. Explain the meaning of the points of intersection of a linear-quadratic system or a quadratic-quadratic system.

The points of intersection of a linear-quadratic system or quadratic-quadratic system are the points where the graphs of the equations in the system intersect. The coordinates of each point of intersection satisfy both equations in the system.