Lesson 5.2 Exercises, pages 360–368

3. Determine whether each point is a solution of the given inequality.
 a) $3x - 2y \geq -16$ \hspace{1cm} A(3, 4)

 In the inequality, substitute: $x = -3$, $y = 4$
 L.S.: $3(-3) - 2(4) = -17$ \hspace{1cm} R.S. = -16
 Since the L.S. < R.S., the point is not a solution.

 b) $4x - y \leq 5$ \hspace{1cm} B(-1, 1)

 In the inequality, substitute: $x = -1$, $y = 1$
 L.S.: $4(-1) - 1 = -5$ \hspace{1cm} R.S. = 5
 Since the L.S. < R.S., the point is a solution.

 c) $3y > 2x - 7$ \hspace{1cm} C(-2, -5)

 In the inequality, substitute: $x = -2$, $y = -5$
 L.S.: $3(-5) = -15$ \hspace{1cm} R.S.: $2(-2) - 7 = -11$
 Since the L.S. < R.S., the point is not a solution.

 d) $5x - 2y + 8 < 0$ \hspace{1cm} D(6, 7)

 In the inequality, substitute: $x = 6$, $y = 7$
 L.S.: $5(6) - 2(7) + 8 = 24$ \hspace{1cm} R.S. = 0
 Since the L.S. > R.S., the point is not a solution.

4. Match each graph with an inequality below.
 i) $2x + y \leq -2$
 ii) $2x + y > 2$
 iii) $x - 2y < 2$
 iv) $x - 2y \geq -1$

 a)

 The line has slope -2
 and y-intercept 2, so its
 equation is:
 $y = -2x + 2$, or $2x + y = 2$
 The inequality is:
 $2x + y \geq 2$

 b)

 The line has slope 0.5 and
 y-intercept 0.5, so its
 equation is:
 $y = 0.5x + 0.5$, or $x - 2y = -1$
 The inequality is:
 $x - 2y \geq -1$
The line has slope -2 and \(y \)-intercept -2, so its equation is:
\[y = -2x - 2, \text{ or } 2x + y = -2 \]
The inequality is:
\[2x + y \leq -2 \]

The line has slope 0.5 and \(y \)-intercept 1, so its equation is:
\[y = 0.5x - 1, \text{ or } x - 2y = 2 \]
The inequality is:
\[x - 2y < 2 \]

5. Write an inequality to describe each graph.

a)
The equation can be written as: \(y = -x + 3 \)
The line is broken, and the shaded region is below the line so an inequality is: \(y < -x + 3 \), or \(x + y < 3 \)

b)
The equation can be written as: \(y = x - 3 \)
The line is solid, and the shaded region is below the line so an inequality is: \(y \leq x - 3 \), or \(x - y \geq 3 \)

c)
The equation can be written as: \(y = x + 3 \)
The line is broken, and the shaded region is above the line so an inequality is: \(y > x + 3 \), or \(x - y < -3 \)

d)
The equation can be written as: \(y = -x - 3 \)
The line is broken, and the shaded region is above the line so the inequality is: \(y > -x - 3 \), or \(x + y > -3 \)
6. Graph each linear inequality.

a) \(y \leq 2x + 5 \)

b) \(y > \frac{1}{3}x + 1 \)

c) \(y < -4x - 4 \)

d) \(y \geq \frac{4}{5}x - 2 \)

Use intercepts to graph the related functions.

When \(x = 0 \), \(y = 5 \)
When \(y = 0 \), \(x = -2.5 \)
Draw a solid line. Shade the region below the line.

When \(x = 0 \), \(y = 1 \)
When \(y = 0 \), \(x = 3 \)
Draw a broken line. Shade the region above the line.

When \(x = 0 \), \(y = -4 \)
When \(y = 0 \), \(x = -1 \)
Draw a broken line. Shade the region below the line.

When \(x = 0 \), \(y = -2 \)
When \(y = 0 \), \(x = 1.5 \)
Draw a solid line. Shade the region above the line.
7. Graph each linear inequality. Give the coordinates of 3 points that satisfy the inequality.

a) \(5x + 3y > 15\)

Graph of \(5x + 3y > 15\)

Use intercepts to graph the related functions.

When \(x = 0, y = 5\)
When \(y = 0, x = 3\)
Use \((0, 0)\) as a test point.
L.S. = 0; R.S. = 15
Since \(0 < 15\), the origin does not lie in the shaded region.
Draw a broken line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: \((2, 3), (1, 5), (3, 2)\)

b) \(3x - 2y \leq -9\)

Graph of \(3x - 2y \leq -9\)

Use intercepts to graph the related functions.

When \(x = 0, y = 4.5\)
When \(y = 0, x = -3\)
Use \((0, 0)\) as a test point.
L.S. = 0; R.S. = -9
Since \(0 > -9\), the origin lies in the shaded region.
Draw a solid line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: \((-2, 3), (-1, 4), (-1, 6)\)

c) \(x + 6y \geq -4\)

Graph of \(x + 6y \geq -4\)

Graph the related functions.

When \(y = 0, x = -4\)
When \(y = -1, x = 2\)
Use \((0, 0)\) as a test point.
L.S. = 0; R.S. = -4
Since \(0 > -4\), the origin lies in the shaded region.
Draw a solid line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: \((2, 1), (1, 2), (3, 3)\)

d) \(4x - 7y < 21\)

Graph of \(4x - 7y < 21\)

Graph the related functions.

When \(x = 0, y = -3\)
When \(y = 1, x = 7\)
Use \((0, 0)\) as a test point.
L.S. = 0; R.S. = 21
Since \(0 < 21\), the origin lies in the shaded region.
Draw a solid line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: \((-1, 3), (1, -1), (2, 3)\)
8. Write an inequality to describe each graph.

a) The line has slope -2 and y-intercept 1, so its equation is: $y = -2x + 1$
 The line is solid and the region below is shaded.
 An inequality is: $y \leq -2x + 1$

b) The line has slope $\frac{3}{4}$ and y-intercept 5, so its equation is: $y = \frac{3}{4}x + 5$
 The line is broken and the region below is shaded.
 An inequality is: $y < \frac{3}{4}x + 5$

9. A student graphed the inequality $2x - y < 0$ and used the origin as a test point. Could the student then shade the correct region of the graph? Explain your answer.

No, the line passes through the origin, so it cannot be used as a test point. The test point must not lie on the line that divides the region.

10. Use technology to graph each linear inequality. Sketch the graph.

a) $y < 1.6x - 1.95$
 Graph: $y = 1.6x - 1.95$
 The boundary is not part of the graph.

b) $y > \frac{4}{3}x + \frac{3}{7}$
 Graph: $y = \frac{4}{3}x + \frac{3}{7}$
 The boundary is not part of the graph.

c) $8x - 3y - 25 \geq 0$
 $3y \leq 8x - 25$
 $y \leq \frac{8}{3}x - \frac{25}{3}$
 Graph: $y = \frac{8}{3}x - \frac{25}{3}$
 The boundary is part of the graph.

d) $4.8x + 2.3y - 3.7 \leq 0$
 $2.3y \leq -4.8x + 3.7$
 $y \leq -\frac{4.8}{2.3}x + \frac{3.7}{2.3}$
 Graph: $y = -\frac{4.8}{2.3}x + \frac{3.7}{2.3}$
 The boundary is part of the graph.
11. Nina takes her friends to an ice cream store. A milkshake costs $3 and a chocolate sundae costs $2.50. Nina has $18 in her purse.

a) Write an inequality to describe how Nina can spend her money.

Let \(m \) represent the number of milkshakes and \(s \) represent the number of sundaes.

An inequality is: \(3m + 2.5s \leq 18 \)

b) Determine 3 possible ways Nina can spend up to $18.

Determine the coordinates of 2 points that satisfy the related function.

When \(s = 0 \), \(m = 6 \)

When \(s = 6 \), \(m = 1 \)

Join the points with a solid line.

The solution is the points, with whole-number coordinates, on and below the line.

Three ways are: 4 milkshakes, 2 sundaes; 3 milkshakes, 3 sundaes; 2 milkshakes, 4 sundaes

The point, with whole-number coordinates, that is closest to the line has coordinates (5, 1); the cost, in dollars, is:

\[(5)(3) + (1)(2.50) = 17.50 \]

Nina can spend $17.50 and still have change.

c) What is the most money Nina can spend and still have change from $18?

The point, with whole-number coordinates, that is closest to the line has coordinates (5, 1); the cost, in dollars, is:

\[(5)(3) + (1)(2.50) = 17.50 \]

Nina can spend $17.50 and still have change.

12. The relationship between two negative numbers \(p \) and \(q \) is described by the inequality \(p - 2q > -6 \).

a) What are the restrictions on the variables?

Since the numbers are negative, \(p < 0 \) and \(q < 0 \)

b) Graph the inequality.

Determine the coordinates of 2 points that satisfy the related function.

When \(p = -10 \), \(q = -2 \)

When \(p = -6 \), \(q = 0 \)

Draw a broken line through the points.

The solution is the points below the line in Quadrant 3.

The point, with whole-number coordinates, that is closest to the line has coordinates (−4, −4) and (−12, −4)
13. Graph each inequality for the given restrictions on the variables.

a) \(y > -3x + 4; \) for \(x > 0, y > 0 \)

Since \(x > 0, y > 0 \), the graph is in Quadrant 1.
The graph of the related function has slope \(-3\) and \(y\)-intercept \(4\).
Draw a broken line to represent the related function in Quadrant 1.
Shade the region above the line.
The axes bounding the graph are broken lines.

b) \(2x - 3y < 6; \) for \(x \geq 0, y \leq 0 \)

Since \(x \geq 0, y \leq 0 \), the graph is in Quadrant 4.
Graph the related function.
When \(y = 0, x = 3 \)
When \(x = 0, y = -2 \)
Draw a broken line in Quadrant 4.
Use \((0, 0)\) as a test point.
L.S. = 0; R.S. = 6
Since \(0 < 6 \), the origin lies in the shaded region.
Shade the region above the line.

c) \(4x + 5y - 20 > 0; \) for \(x \leq 0, y \geq 0 \)

Since \(x \leq 0, y \geq 0 \), the graph is in Quadrant 2.
Graph the related function.
When \(x = 0, y = 4 \)
When \(x = -5, y = 8 \)
Draw a broken line in Quadrant 2.
Use \((0, 0)\) as a test point.
L.S. = \(-20\); R.S. = 0
Since \(-20 < 0\), the origin does not lie in the shaded region.
Shade the region above the line.

14. a) For \(A(9, a) \) to be a solution of \(3x - 2y < 5 \), what must be true about \(a \)?

Substitute the coordinates of \(A \) in the inequality.
\[3(9) - 2(a) < 5 \]
Solve for \(a \).
\[2a > 22 \]
\[a > 11 \]

b) For \(B(b, -3) \) to be a solution of \(3x + 4y \geq -12 \), what must be true about \(b \)?

Substitute the coordinates of \(B \) in the inequality.
\[3(b) + 4(-3) \geq -12 \]
Solve for \(b \).
\[3b \geq 0 \]
\[b \geq 0 \]
15. A personal trainer books clients for either 45-min or 60-min appointments. He meets with clients a maximum of 40 h each week.

a) Write an inequality that represents the trainer’s weekly appointments.

Let \(x \) represent the number of 45-min appointments and \(y \) represent the number of 60-min appointments.

An inequality is: \(45x + 60y \leq 2400 \)

Divide by 15.

\(3x + 4y \leq 160 \)

b) Graph the related equation, then describe the graph of the inequality.

Determine the coordinates of 2 points that satisfy the related function.

When \(x = 0, y = 40 \)
When \(x = 20, y = 25 \)

Join the points with a solid line.

The solution is the points, with whole-number coordinates, on and below the line.

For no 60-min appointments, \(y = 0 \), so the point is on the \(x \)-axis; it is the point with whole-number coordinates that is closest to the \(x \)-intercept of the graph of the related equation. When \(y = 0 \),

\(x = \frac{2400}{45} \), or \(53.3 \)

Fifty-three 45-min appointments are possible.

16. Graph this inequality. Identify the strategy you used and explain why you chose that strategy.

\(\frac{x}{3} + \frac{y}{2} \geq 1 \)

Graph the related function.

Determine the intercepts.

When \(y = 0, x = 3 \)
When \(x = 0, y = 2 \)

Draw a solid line.

Use \((0, 0) \) as a test point.

L.S. = 0; R.S. = 1

Since \(0 < 1 \), the origin is not in the shaded region.

Shade the region above the line.
17. How is a linear inequality in two variables similar to a linear inequality in one variable? How are the inequalities different?

The solutions of both inequalities are usually sets of values. A linear inequality in one variable is a set of numbers that can be represented on a number line. A linear inequality in two variables is a set of ordered pairs that can be represented on a coordinate plane.